
Resize-Extend a disk partition with
unallocated disk space in Linux
Expanding disk partitions to use all the available (unallocated)
disk space is a common issue among Linux Administrators, especially
when working in a VMware-based Cloud environment: deploying a Linux
VM from an existing template will often lead to disk partitions
smaller than the disk space allocated during the VM configuration
phase.

Consider the following scenario:

This screen can be obtained by running cfdisk from the terminal and
shows the following:

a 524MB boot partition [sda1]
a 6.8GB drive [sda2], used by the Linux OS and all its installed
packages.
100GB of unallocated space
It would be great to extend that puny 6.8GB partition and make it
become a 106.8GB drive… How can we do that? If you take a look

around you’ll see that the web is awfully short of a quick and
effective tutorial for this: that’s why I eventually chose to write
my own guide: here it is!

Luckily enough, we won’t need anything fancy to perform our task:
we’re just going to make good use of fdisk , pvresize , lvdisplay
and lvextend , some handy command-line tools shipped with any Linux
distribution: that’s great to hear, since it means that this
tutorial will work for any Linux distro, including CentOS 5.x,
CentOS 6.x, CentOS 7.x, RHEL, Ubuntu, Debian and more!

Step 1: Alter the Partition Table

The first thing we need to do is to modify our partition table to
make sda2 end at end of disk: don’t worry, you will not lose your
existing data! However, this task will require a reboot in order to
write the changes that we’re going to make and also to re-read the
updated partition table.

Let’s start with running the following command:

fdisk /dev/sda

This will make the terminal enter in fdisk mode:

● once there, type p to print the current partition table: it’s
very important to keep note of the numeric values of the START
and END columns for the /dev/sda2 partition, as we’re going
to need them soon enough. If you want to be sure to not lose
them or typing them wrong, just print-screen or paper-print
them.

● Once done, type d to access the delete mode, and then the
number of the partition record that you want to remove (that
would be 2 in the above scenario). Again, DO NOT WORRY:
you’re not deleting the partition data, just its mapping
addresses on the partition table.

● Right after that, type n to create a brand-new second
partition: choose the same partition mode of the previous one
(that would be Primary in the above scenario), then input the
START numeric value you’ve recorded earlier – which should be
the suggested default; also, make sure that the end is at the
end of the disk – which should also be the default.

● Last but not least, we need to change the partition type from
Linux to Linux LVM: to do so, type t to access the change
partition type mode, then 2 , then 8e and that’s it.

● When done, type p to review your new partition layout. Be
sure to triple-check that the start of the new second
partition is exactly where the old second partition was: this
is very important! In case you did it wrong, type d to delete
the wrong partition and start over.

● If everything looks right, issue w to write the partition
table to disk.

Step 2: Reboot

Right after writing the new partition table to disk, you’ll
immediately get a system error message due to the fact that the
partition table couldn’t be accessed for read, because the disk is
in use. That’s why we need to reboot our system.

Step 3: Expand the LVM Partition

Use the resize2fs utility to extend the EXT3/4 filesystem to utilise
the additional space in the partition e.g.:

resize2fs /dev/sdb1

Note: when running resize2fs, if no size is specified, the
filesystem will be extended to utilise all available/remaining space
in the partition.

